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ABSTRACT 
Single loop detectors provide the most abundant source of traffic data in California, but loop 
data samples are often missing or invalid.  We describe a method that detects bad data 
samples and imputes missing or bad samples to form a complete grid of ‘clean data’, in real 
time.  The  diagnostics algorithm and the imputation algorithm that implement this method 
are operational on 14,871 loops in six Districts of the California Department of 
Transportation.   

The diagnostics algorithm detects bad (malfunctioning) single loop detectors from their 
volume and occupancy measurements.  Its novelty is its use of time series of many samples, 
rather than basing decisions on single samples, as in previous approaches.  The imputation 
algorithm models the relationship between neighboring loops as linear, and uses linear 
regression to estimate the  value of missing or bad samples.  This gives a better estimate than 
previous methods because it uses historical data to learn how pairs of neighboring loops 
behave.  Detection of bad loops and imputation of loop data are important because they allow 
algorithms that use loop data to perform analysis without requiring them to compensate for 
missing or incorrect data samples. 
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INTRODUCTION 
Loop detectors are the best source of real time freeway traffic data today.  In California, these 
detectors cover most  urban freeways.  Loop data provide a powerful means to study and monitor 
traffic (2).  But the data contain many holes (missing values) or bad (incorrect) values and require 
careful ‘cleaning’ to produce reliable results.  Bad or missing samples present problems for any 
algorithm that uses the data for analysis.  Therefore, we need both to detect when data are bad and 
throw them out, and to ‘fill’ holes in the data with imputed values.  The goal is to produce a complete 
grid of reliable data.   We can trust analyses that use such a complete data set. 

We need to detect bad data from the measurements themselves.  The problem was studied by the 
FHWA, Washington DOT, and others.  Existing algorithms usually work on the raw 20-second or 30-
second data, and produce a diagnosis for each sample.  But it’s very hard to tell if a single 20-second 
sample is good or bad unless it’s very abnormal.  Fortunately, loop detectors don’t just give random 
errors—some loops produce reasonable data all the time, while others produce suspect data all the 
time.  By examining a time series of measurements one can readily distinguish bad behavior from 
good.  Our diagnostics algorithm examines a day’s worth of samples together, producing convincing 
results.   

Once bad samples are thrown out, the resulting holes in the data must be filled with imputed values.  
Imputation using time series analysis has been suggested before, but these imputations are only 
effective for short periods of missing data; linear interpolation and neighborhood averages are natural 
imputation methods, but they don’t use all the relevant data that are available.  Our imputation 
algorithm estimates values at a detector using data from its neighbors.  The algorithm models each 
pair of neighbors linearly, and fits its parameters on historical data.  It is robust, and performs better 
than other methods.   

We first describe the data and types of errors that are observed.  We then survey current methods of 
error detection, which operate on single 20-second samples.  Then we present our diagnostic 
algorithm, and show that it performs better.  We then present our imputation algorithm, and show that 
this method is better than other imputation methods such as linear interpolation. 

DESCRIPTION OF DATA 
The freeway Performance Measurement System (PeMS) (1,2) collects, stores, and analyzes data from 
thousands of loop detectors in six districts of the California Department of Transportation (Caltrans).  
The PeMS database currently has 1 terabyte of data online, and collects more than 1GB per day.  
PeMS uses the data to compute freeway usage and congestion delays, measure and predict travel 
time, evaluate ramp-metering methods, and validate traffic theories.  There are 14,871 main line (ML) 
loops in the PeMS database from six Caltrans districts.  The results presented here are for main line 
loops.  Each loop reports the volume q(t)—the number of vehicles crossing the loop detector during a 
30-second time interval t, and occupancy k(t)—the fraction of this interval during which there is a 
vehicle above the loop. We call each pair of volume and occupancy observations a sample.  The 
number of total possible samples in one day from ML loops in PeMS is therefore (14871 loops) x 
(2880 sample per loop per day) = 42 million samples.  In reality, however, PeMS never receives all 
the samples.  For example, Los Angeles has a missing sample rate of about 15%.  While it’s clear 
when we miss samples, it’s harder to tell when a received sample is bad or incorrect.   A diagnostics 
test needs to accept or reject samples based on our assumption of what good and bad samples look 
like.   
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EXISTING DATA RELIABILITY TESTS 
Loop data error has plagued their effective use for a long time.  In 1976, Payne (3) identified five 
types of detector errors and presented several methods to detect them from 20-second and 5-minute 
volume and occupancy measurements.  These methods place thresholds on minimum and maximum 
flow, density, and speed, and declare a sample to be invalid if they fail any of the tests.  Later, 
Jacobsen and Nihan at the University of Washington defined an ‘acceptable region’ in the k-q plane, 
and declared samples to be good only if they fell inside the region (4).  We call this the Washington 
Algorithm.  The boundaries of the acceptable region are defined by a set of parameters, which are 
calibrated from historical data, or derived from traffic theory.   
 
Existing detection algorithms (3,4,5) try to catch the errors described in (3).  For example, 
‘chattering’ and ‘pulse break up’ cause q to be high, so a threshold on q can catch these errors.  But 
some errors cannot be caught this way, such as a detector stuck in the ‘off’ (q=0, k=0) position.  
Payne’s algorithm would identify this as a bad point, but good detectors will also report (0,0) when 
there are no vehicles in the detection period.  Eliminating all (0,0) points introduces a positive bias in 
the data.  On the other hand, the Washington Algorithm accepts the (0,0) point, but doing so makes it 
unable to detect the ‘stuck’ type of error.  A threshold on occupancy is similarly hard to set.  An 
occupancy value of 0.5 for one 30-second period should not indicate an error, but a large number of 
30-second samples with occupancies of 0.5, especially during non-rush hours, points to a 
malfunction.   

We implemented the Washington Algorithm in Matlab and tested it on 30-second data from 2 loops 
in Los Angeles, for one day.  The acceptable region is taken from (4).  The data and their diagnoses 
are shown in Figure 1.  Visually, loop 1 looks good (Figure 1b), and loop 2 looks bad (Figure 1d).  
Loop 2 looks bad because there are many samples with k=70% and q=0, as well as many samples 
with occupancies that appear too high, even during non-rush hours, and when loop 1 shows low 
occupancy.  The Washington Algorithm, however, does not make the correct diagnosis.  Out of 2875 
samples, it declared 1138 samples to be bad for loop 1 and 883 bad for loop 2.  In both loops, there 
were many false alarms.  This is because the maximum acceptable slope of q/k was exceeded by 
many samples in free flow.  This suggests that the algorithm is very sensitive to thresholds and needs 
to be calibrated for California. Calibration is impractical because each loop will need a separate 
acceptable region, and ground truth would be difficult to get. 

There are also false negatives–many samples from loop 2 appear to be bad because they have high 
occupancies during off peak times, but they were not detected by the Washington Algorithm. This 
illustrates a difficulty with the threshold method—the acceptable region has to be very large, because 
there are many possible traffic states within a 30-second period.  On the other hand, a lot more 
information can be gained by looking at how a detector behaves over many sample times.  This is 
why we easily recognize loop 1 to be good and loop 2 to be bad by looking at their k(t) plots, and this 
is a key insight that led to our diagnostics algorithm. 

PROPOSED DETECTOR DIAGNOSTICS ALGORITHM 

Design 
 
The algorithm for loop error detection uses the time series of flow and occupancy measurements, 
instead of making a decision based on an individual sample.  It is based on the empirical observation 
that good and bad detectors behave very differently over time.  For example, at any given instant, the 
flow and occupancy at a detector location can have a wide range of values, and one cannot rule most 
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of them out; but over a day, most detectors show a similar pattern—flow and occupancy are high in 
the rush hours and low late at night.  Figure 2a and 2b show typical 30-second flow and occupancy 
measurements.  Most loops have outputs that look like this, but some loops behave very differently.  
Figure 2c and 2d show an example of a bad loop.  This loop has zero flow and an occupancy value of 
0.7 for several hours during the evening rush hour—clearly, these values must be incorrect.  We 
found 4 types of abnormal time series behavior, and list them in Table 1.  Types 1 and 4 are self-
explanatory; types 2 and 3 are illustrated in Figure 2c, 2d, and Figure 1b.  The errors in Table 1 are 
not mutually exclusive.  For example, a loop with all zero occupancy values exhibits both type 1 and 
type 4 errors.  A loop is declared bad if it is in any of these categories.   
 
We did not find a significant number of loops that have chatter or pulse break up, which would 
produce abnormally high volumes. Therefore the current form of the detection algorithm does not 
check for this condition.  However, a fifth error type and error check can easily be added to the 
algorithm to flag loops with consistently high counts. 

We developed the Daily Statistics Algorithm (DSA) to recognize error types 1-4 above.  The input to 
the algorithm is the time series of 30-second measurements q(d,t) and k(d,t), where d is the index of 
the day, and t=0,1,2,...,2879 is the 30-second sample number; the output is the diagnosis ∆(d) for the 
dth day: ∆(d)=0 if the loop is good, and ∆(d)=1 if the loop is bad.  In contrast to existing algorithms 
that operate on each sample, the DSA produces one diagnosis for all the samples of a loop on each 
day.   

We use only samples between 5am and 10pm to do the diagnostics, because outside of this period, it’s 
more difficult to tell the difference between good and bad loops.  There are 2041 30-second samples 
in this period, therefore the algorithm is a function of 2041x2=4082 variables.  Thus the diagnostic 
∆(d) on day d is a function, ∆(d) = f(q(d,a), q(d,a+1),..., q(d,b), k(d,a), k(d,a+1),..., k(d,b)), where 
a=5*120=600 is the sample number at 5am, and b=22*120=2640 is the last sample number, at 10pm.  
To deal with the large number of variables, we first reduce them to four statistics, S1,...,S4,  which are 
appropriate summaries of the time series.  Their definitions are given in Table 2, where Sj(i,d) is the 
jth statistic computed for the ith loop on the dth day.  The decision ∆ becomes a function of these four 
variables.  For the ith loop and dth day, the decision whether the loop is bad or good is determined 
according to the rule 
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where are thresholds on each statistic.  These four statistics summarize the daily measurements well 
because they are good indicators of the four types of loop failure listed in Table 1.  This is seen in the 
histogram of each of statistic displayed in Figure 3.  The data are collected from Los Angeles on 
4/24/2002.  The distribution of each statistic shows two distinct populations.  In S1, for example, there 
are two peaks at 0 and 2041.  This shows that there are two groups of loops—one group of about 
4700 loops have very few samples that report zero occupancy, and another group of about 300 that 
report almost all zeros.  The second group is bad, because they have type 1 error.  Since all four 

*
js
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distributions are strongly bi-modal, Equation 1 is not very sensitive to the thresholds sj
*  which just 

have to be able to separate the two peaks in the four histograms in Figure 3.  The default thresholds 
are given in Table 2.  The only other parameters of this model are the time ranges, and the definition 
of S3, where an occupancy threshold of 0.35 is specified.  The DSA uses a total of 7 parameters, listed 
in Table 3.  They work well in all 6 Caltrans districts.  
 
Performance 
 
The DSA algorithm is implemented and run on PeMS data. The last column in Table 1 shows the 
distribution of the 4 types of errors in District 12 (Orange County) for 31 days in October, 2001.  
Because we don’t have the ground truth of which detectors are actually bad, we must verify the 
performance of this algorithm visually.  Fortunately, this is easy for in most cases, because the time 
series show distinctly different patterns for good and bad detectors.  A visual test was performed on 
loops in Los Angeles, on data from 8/7/2001.  There are 662 loops on Interstate 5 and Interstate 210, 
out of which 142 (21%) were declared to be bad by the algorithm.  We then manually checked the 
plots of occupancy to verify these results.  We found 14 loops that were declared good, but their plots 
suggested they could be bad.  This suggests a false negative rate of 14/(662-142) = 2.7%.  There were 
no false positives.  This suggests that the algorithm performs very well. 
 
Real-Time Operation 
 
The detection algorithm described above gives a diagnosis on samples from an entire day.  But we are 
also interested in real-time detection—the validity of each sample as it is received.  Therefore what 
we want is a decision , where d is the current day, and t is the current sample time.  We 
use the simple approximation: 

),(ˆ tdi∆

  2 )1(),(ˆ −∆=∆ dtd ii

where ∆i is defined in Equation 1.  Equation 2 has two consequences.   First, a loop is declared good 
or bad for an entire day. As a result, we lose some flexibility because we may be throwing away good 
data from a partially bad loop—this point is discussed in the conclusion section.  Second, there is a 
one-day lag in the diagnosis, which introduces a small error.  We estimated the probability of loop 
failure given the loop status on the previous day, and found Equation 2 to be true for 98% of the time.  
Therefore, it is a good approximation. 
 

IMPUTATION OF MISSING AND BAD SAMPLES 

The Need for Imputation 
We model the measurement of each detector as either the actual value or an error value, depending on 
the status ∆:  
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28790),(),())(1)(,(),(

),(),())(1)(,(),(

,,

,,

≤≤∆+∆−=

∆+∆−=

tdtddtdktdk

dtddtdqtdq

iiiirealimeas

iiiirealimeas

φ

ε

 
where qmeas,i and kmeas,i are the measured values, qreal,i and kreal,i are the true values, and εi and φi are 
error values that are independent of qreal,i and kreal,i.  We obtained an estimate of the loop status in 
Equation 2. It tells us to discard the samples from detectors that are declared bad.  This leaves holes in 
the data, in addition to the originally missing samples.  This is a common problem–at each sample 
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time, the user must determine whether it is a good sample or not.  An application that analyzes the 
data must deal with both possibilities.    
 
One approach to missing data is to predict them using time series analysis.  Nihan modeled 
occupancy and flow time series as ARMA processes and predicted values in the near future (6); 
Dailey presented a method of prediction from neighbor loops using a Kalman filter (9).  In our case, 
the errors do not occur randomly, but persist for many hours and days.  Time series predictions 
become invalid very quickly and are inappropriate in such situations.  We developed an imputation 
scheme that uses information from good neighbor loops at only the current sample time.  This is a 
natural way of dealing with missing data and is used by traditional imputation methods.  For example, 
to find the total volume of a freeway location with 4 lanes and only 3 working loops, one may 
reasonably use the average of the 3 lanes and multiply it by 4.  This imputes the missing value using 
the average of its neighbors.  Linear interpolation is another example.  Suppose detector i is 
bad, and is located between detectors j and k which are good.  Let xi, xj, xk be their locations, 
and xj < xi < xk, then 
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is the linear interpolation imputation.  While these traditional imputation methods are intuitive, they 
make naive assumptions about the data.  Our proposed algorithm, on the other hand, models the 
behavior of neighbor loops better because it uses historical data. 

Linear Model Of Neighbor Detectors 
We propose a linear regression algorithm for imputation that models the behavior of neighbor loops 
using historical data.  We find that occupancies and volumes of detectors in nearby locations are 
highly correlated.  Therefore, measurements from one location can be used to estimate quantities at 
other locations, and a more accurate estimate can be formed if all the neighboring loops are used in 
the estimation.  We define two loops to be neighbors if they are in the same location in different 
lanes, or if they are in adjacent locations.  Figure 4 shows a typical neighborhood.  We find that both 
volume and occupancy from neighboring locations are strongly correlated.  Figure 5 shows two pairs 
of neighbors with linearly related flow and occupancies.  Figure 6 plots the distribution of the 
correlation coefficients between all neighbors in Los Angeles.  It shows that most neighbor pairs have 
high correlations in both flow and occupancy.   

The high correlation among neighbor loop measurements means that linear regression is a good way 
to predict one from the other.  It is also easy to implement and fast to run.  We use the following pair-
wise linear model to relate the measurements from neighbor loops: 
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For each pair of neighbors (i,j), the parameters α0(i,j), α1(i,j), β0(i,j), β1(i,j) are estimated using five 
days of historical data.  Let qi(t),qj(t), t=1,2,...,n be the historical measurements of volume, then 
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The parameters for density are fitted the same way.  We can find parameters for all pairs of loops that 
report data in our historical database, but some loops never report any data.  For them, we use a set of 
global parameters α0

*(δ,l1,l2), α1
*(δ,l1,l2), β0

*(δ,l1,l2), β1
*(δ,l1,l2) that generalize the relationship 

between pairs of loop in different configurations.  For each combination of (relative location, lane of 
loop 1, lane of loop 2), we have a linear model as follows. 
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where 
δ = 0 if i and j are in the same location on the freeway, 1 otherwise 
li = lane number of loop i 
lj = lane number of loop j 
li,lj = 1,2,3,...,8 

 
The global parameters are fitted to data similar to the local parameters.  In Los Angeles, there are 
60,760 pairs of neighbors (i,j) for 5377 loops; in San Bernardino, there are 3,896 pairs for 466 loops.  
The four parameters for each pair are computed for these two districts and stored in database tables. 
 
When imputing values for loop i using its neighbors, each neighbor provides an estimate, and the 
final estimate is taken as the median of the pair wise estimates.  Both volume and occupancy 
imputation are performed the same way.  The imputation for volume is 
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Here  obtained from Equation 2 is the diagnosis of the jth loop—only estimates from good 
neighbors are used in the imputation.  Equation 12 is a way to combine information from multiple 
neighbors.  While this method is suboptimal compared to those with joint probability models, such as 
multiple regression, it is more robust.  Multiple regression models all neighbors jointly, as opposed to 
the pair-wise model adopted here.  Dailey also presented an estimation method based on all neighbors 
jointly using a Kalman filter (9).  But we chose the pair-wise model for its robustness--it generates an 
estimate as long as there is one good neighbor.  In contrast, multiple regression needs values at each 
sample time from all the neighbors.  Robustness is also increased by use of the median of q ’s 
instead of the mean, which is affected by outliers and errors in ∆j.   

),(ˆ tdj∆

ijˆ

After one iteration, the imputation algorithm generates estimates for all the bad loops that have at 
least one good neighbor.  We still need to do something for the bad loops that don’t have good 
neighbors.  We have not decided on a scheme for how to do this, but there are several alternatives.  
The current implementation simply iterates the imputation process.  After the first iteration, a subset 
of the bad loops is filled with imputed values—these are the loops with good neighbors.  In the 
second iteration, the set of good loops grows to include those that have been imputed in the previous 
iteration, so some of the remaining bad loops now have good neighbors.  This process continues until 
all loops are filled, or until all the remaining bad loops don’t have any good neighbors.  The problem 
with this method is that the imputation becomes less accurate with each succeeding iteration.  
Fortunately, most of the bad loops are filled in the first iteration.  In District 7 on 4/24/2002, for 
example, the percentages of filled loops in the first 4 iterations are 90%, 5%, 1%, 1%; the entire grid 
is filled after 8 iterations.  Another alternative is to use the current imputation only for the first n 
imputations.  After that, if there are still loops without values, we can use another method such as 
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historical mean.  In any case, an alternative imputation scheme is required for sample times when 
there are no good data for any loop.   

Performance 
We evaluate the performance of this algorithm on data from 4/24/2002.  To run this test, we found 
189 loops that are themselves good and also had good neighbors.   From each loop i, we collected the 
measured flows and occupancies qi(t) and ki(t); we then ran the algorithm to compute the estimated 
values and based on neighbors.  From these, we found the root mean squared errors for 
each loop, see Table 4.  This table shows that the estimates are unbiased as they should be.  The 
standard deviation of imputation error is small compared to the mean and standard deviation of the 
measurements.  Figure 7 compares the estimated and original values for one loop.  They show good 
agreement. 

)(ˆ tqi )(ˆ tki

 
We also compared the performance of our algorithm against that of linear interpolation.  Fifteen 
triplets of good loops were chosen for this test.  Ten of the triplets are loops in the same lane, 
different locations, while 5 other triplets have their loops in the same location, across 3 lanes.  In each 
triplet, we used two loops to predict the volume and occupancy of the third loop using linear 
interpolation.  In every case, the neighborhood method produced a lower error in occupancy 
estimates; it produced smaller errors in flow estimates in 10 of 15 locations. Overall, the 
neighborhood method performed better in the mean and median, as expected. 

CONCLUSION 
We presented algorithms to detect bad loop detectors from their outputs, and to impute missing data 
from neighboring good loops.  Existing methods of detection evaluate each 20-second sample to 
determine if it represents a plausible traffic state, but we found that there is much more information in 
how detectors behave over time.  Our algorithm makes diagnoses based on the sequence of 
measurements from each detector over a whole day.  Visually, bad data is much easier to detect when 
viewed as a time series.  We found that our algorithm found almost all of the bad detectors that could 
be found visually.  

Our imputation algorithm estimates the true values at locations with bad or missing data.  This is an 
important functionality, because almost any algorithm that uses the data needs a complete grid of 
data.  Traditionally, the way to deal with missing data is to interpolate from near-by loops.  Our 
algorithm performs better than interpolation because it uses historical information on how the 
measurements from neighbor detectors are related.  We model the volume and occupancy between 
neighbor loops linearly, and find the linear regression coefficients of each neighbor pair from 
historical data.  This algorithm is simple and robust.   

There remain many possibilities for improvements to the algorithms described here.  The detection 
algorithm described here has a time lag.  To address this, we are developing a truly real time detection 
algorithm that incorporates neighbor loop measurements as well as the past day’s statistics.  While the 
linear model describes most neighbor pairs, some pairs have non-linear relationships, so a more 
general model may be better.  Another area of improvement is the handling of entire blocks of 
missing data.  The current imputation algorithm needs a large number of good loops to impute the 
rest, but it doesn’t work if most or all the loops are bad for a sample time.  We need a method to 
handle this situation. 
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Single loop data diagnostics is an important area of research.  While loop detectors are the most 
abundant source of traffic information, the data are sometimes bad or missing.  The algorithms we 
presented construct a complete grid of clean data in real time.  They simplify the design of upper level 
algorithms and improve the accuracy of analysis based on loop data. 
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Table 1 Error Types. 

Error Type Description Likely Cause Fraction of loops in 
District 12 

1 Occupancy and flow are mostly zero Stuck off 5.6% 
2 Non-zero occupancy and zero flow, see 

Figure 2c and 2d. 
Hanging on 5.5% 

3 Very high occupancy, see Figure 1d Hanging on 9.6% 
4 Constant occupancy and flow Stuck on or 

off 
11.2% 

All Errors   16% 
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Table 2 Statistics for diagnostics. 

Name Definition Description 
S1(i,d) ∑

≤≤

=
bta

i tdk )0),((1  number of samples that have occupancy = 0.   

S2(i,d) ∑
≤≤

=>
bta

ii tdqtdk )0),((1)0),((1  number of samples that have occupancy>0 and flow=0 

S3(i,d: ∑
≤≤

=>
bta

i kktdk 35.0),),((1 **  number of samples that have occupancy > k* (=0.35) 

S4(i,d) 

∑∑

∑

≤≤≤≤

>

==

−

btabta
i

xpx

xtdkxp

xpxp

1)),((1)(ˆ

,))(ˆlog()(ˆ)1(
0)(:

entropy of occupancy samples – a well-known measure of 
the “randomness” of a random variable.  If ki(d,t) is constant 
in t, for example, its entropy is zero. 
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Table 3 Parameters of the Daily Statistics Algorithm, and their default settings 

Parameter Value 
k* 0.35 
s1

* 1200 
s2

* 50 
s3

* 200 
s4

* 4 
a 5am 
b 10pm 
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Table 4 Performance of imputation. 

Quantity Mean Standard 
Deviation 

Mean Absolute 
Error 

Standard 
Deviation of 
Error 

Mean 
Error 

Occupancy 0.085 0.061 0.013 0.021 0.001 
Volume (vph) 1220 527 132  201  6  
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b a 

c 

d 

Figure 1 The Washington Algorithm on two loops.  Loop 1 and 2 are in Los Angeles, I-5 North, 
postmile 7.8, lanes 1 and 2; data collected on 8/7/2001.  Occupancy is in percent. 
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d 

Figure 2 Typical and abnormal 30-sec flow (left) and occupancy measurements.   
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Figure 3 Histograms of S1 - S4.   
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Figure 4 Example of neighboring loops. 
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Figure 5 Scatter plot of occupancies and flows from two pairs of neighbors.  
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Figure 6 Cumulative distribution of the correlation coefficients between neighbors. 
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Figure 7 Original and estimated occupancies and flows for a good loop. 
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